Networked Energy Services (NES) and eSmart Systems have written a joint white paper about making the smart grid intelligent. This blog article is an extract - read the white paper here.
Timely actionable insight is the key to making the correct business and operational decisions. Over the last few decades, significant investment has been made in the monitoring and management of the medium- and high- voltage grids.
The latest generation of smart meters provides new levels of visibility of power and voltage quality at the substation transformer and the consumer. Some smart grid solutions even provide visibility of the low-voltage grid topology and connectivity, and can create measurements from within the low-voltage grid.
With the availability of information from the low-voltage grid, software solutions that process and analyse this information can make a positive contribution by providing timely actionable insight. This insight can be used to improve operational processes and can also have a positive impact on the quality of service that the end consumer receives.
In the following, we will explore how the latest smart metering solutions can be combined with new analytics tools to improve power reliability, by looking at three key scenarios:
Read also our guide to efficient power grid operations for the digital age.
Improving power quality is the fundamental step to take. This involves gathering as much information as possible about the current and historical performance of the low-voltage grid, from the substation to the consumer, and exposing this into analytics tools to help highlight the indicators of network quality problems.
The sensor network exposes a wide range of voltage and power quality parameters, at the substation and consumer premise, but also at points deep in the low-voltage grid. This information can be used to identify capacity problems and non-optimal configurations in the low-voltage grid, which can, through analytics, be used to trigger proactive maintenance activities as well as respond to more immediate problems which are directly affecting consumers, such as voltage and power quality degradations.
Modern smart meters provide high resolution data about e.g. consumption. By using advanced analytics on consumption patterns it is possible to:
This is information that affects the power distribution, so it is important to get an overview of this and it also helps in marketing use to make sure you increase the possibility for up-sales.
Read the full article here: Making the Smart Grid intelligent
With problems in the low-voltage grid identified, it then becomes important to identify the scope of the impacts. Through closer integration of the sensor network and the analytics framework, it becomes possible to assess impacts in terms of both affected consumers, but also the business and social impact of the outages.
Not only is the topology of the low-voltage grid mapped out by the sensor network; the mapping between the topology and physical infrastructure, and topology and consumers can also be defined through integration with back-end systems.
These capabilities mean that both the possible root-cause and impact of fault can be assessed:
To improve the process of impact assessment and get faster resolutions it is important to have a wider perspective, a holistic view. DSOs need to utilize all data available to see as many correlations as possible.
With the root-cause and the consumer impact identified, it now becomes possible to stream-line how problems are resolved through:
The information generated from the sensor network provides a rich source of alarm/event and historical performance information, which can be used by the analytics framework to define actions, embedded into the field-engineer’s pack and accessed on-line by the engineer from the field if required.
With the amounts of data now available, we believe the ones who win are the ones that can utilize this data, do the right analysis and take the right actions.
The combination of a sensor network in the low-voltage grid, together with an analytics framework to draw insight from the information it exposes, provides a new and exciting set of possibilities for DSOs:
Such systems are available today, with Networked Energy Services Patagonia Energy Applications Platform and smart meters, along with the eSmart Systems analytics frameworks being excellent examples.